41 research outputs found

    Synthesis of Conjugated Polymers and Small Molecules for Organic Light-Emitting Devices and Photodetectors

    Get PDF
    Production cost and environmental impact are the two major concerns that are related to the conventional optoelectronic devices. It is desirable for the modern semiconductors that they are free of toxic/costly metals, they can be processed with low-cost solution-based methods, and their optical, electronic, and mechanical properties can be easily tuned depending on the target application. In this thesis, a range of different conjugated polymers and small molecules are designed and synthesized as semiconductors for organic light-emitting diodes (OLEDs), light-emitting electrochemical cells (LECs), and organic photodetectors (OPDs).In organic light-emitting devices, the emissive molecule is commonly mixed with a charge transporting host matrix, which can be either a small molecule or a conjugated polymer. The latter is beneficial since it does not require deposition of the emitter and matrix components in high vacuum and high temperature conditions. The polymeric materials can be dissolved and printed on a substrate of any desired size and production scale, at room temperature, and even under ambient air. The specific wavelength range of near-infrared (NIR) at λ >700 nm is of interest for a wide range of applications spanning from optical communication to biosensing. However, the low energy of NIR range poses challenges for the materials design, in terms of emission efficiency and light intensity, which are further addressed in this thesis, allowing the fabrication of high-performance NIR-OLEDs and NIR-LECs.For photodetectors, absorption of a wide spectrum of light is beneficial in biosensing and imaging applications. Low noise and fast charge extraction are necessary for the detection of light at high speeds even at low intensities. These aspects are studied in this thesis by designing new polymers with different absorption, charge transport, and morphological properties in the photoactive layer. Two polymers enabled the fabrication of visible (red) OPDs with a low dark current (the main constituent in the noise), high detectivity, and high photoresponse speed

    Low-gap zinc porphyrin as an efficient dopant for photomultiplication type photodetectors

    Get PDF
    A new zinc porphyrin, named as Por4IC, was synthesized, which through extension of conjugation and an enhancement of planarity and donor-acceptor interactions exhibits a very low band gap. The molecule was able to efficiently facilitate a photomultiplication effect in blend with P3HT which was assisted by electron trapping followed by hole tunneling injection from the Al electrode giving rise to a high external quantum efficiency of 22 182% and a specific detectivity of 4.4 7 1012 Jones at 355 nm and at -15 V bias. This work introduces porphyrin derivatives as promising dopants for photomultiplication type photodetectors. This journal i

    Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth Red-Emitting Polymer-LED based Visible Light Communications

    Get PDF
    In this paper we experimentally demonstrate, for the first time, staggered carrier-less amplitude and phase (sCAP) modulation for visible light communication systems based on polymer light-emitting diodes emitting at ~639 nm. The key advantage offered by sCAP in comparison to conventional multiband CAP is its full use of the available spectrum. In this work, we compare sCAP, which utilises four orthogonal filters to generate the signal, with a conventional 4-band multi-CAP system and on-off keying (OOK). We transmit each modulation format with equal energy and present a record un-coded transmission speed of ~6 Mb/s. This represents gains of 25% and 65% over the achievable rate using 4-CAP and OOK, respectively.Comment: 6 pages, 9 figures, IEEE ICC 2019 conferenc

    Kollektiivisopimukset työehtojen turvaajana

    Get PDF
    Siirretty Doriast

    Kollektiivisopimukset ja työrauha

    Get PDF
    Siirretty Doriast

    Broad spectrum absorption and low-voltage electrochromic operation from indacenodithieno[3,2-: B] thiophene-based copolymers

    Get PDF
    Electrochromic performance of conjugated polymers has quickly become an important design factor in a variety of applications. There is still significant need to develop highly stable materials with high optical contrast, desired colour switching and fast kinetics. Here, poly[indacenodithieno[3,2-b]thiophene-2,8-diyl] (PIDTT) is introduced as a new type of electrochromic polymer exhibiting a narrow absorption band, excellent electrochemical stability and fast colour switching kinetics between vibrant red (peak maximum at ∼550 nm) and transparent (peak maximum at ∼920 nm) within a low potential range of 0-0.8 V. To widen the spectral coverage of the well-functioning PIDTT over the entire visible range, a modified donor-acceptor approach is used by incorporating three different donor-acceptor-donor (DAD) segments into an indacenodithieno[3,2-b]thiophene (IDTT) based polymer backbone, so as to obtain three different alternating copolymers. This design motif is further rationalized by the maintained electrochemical stability of the new copolymers, and their full colour switching between black and transparent down to an ultra-low potential range of 0-0.6 V

    A porphyrin pentamer as a bright emitter for NIR OLEDs

    Full text link
    The luminescence and electroluminescence of an ethyne-linked zinc(ii) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (λ > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs

    A porphyrin pentamer as a bright emitter for NIR OLEDs

    Get PDF
    The Luminescence and electroluminescence of an ethyne-Linked zinc(II) porphyrin pentamer have been investigated, by testing blends in two different conjugated polymer matrices, at a range of concentrations. The best results were obtained for blends with the conjugated polymer PIDT-2TPD, at a porphyrin loading of 1 wt%. This host matrix was selected because the excellent overlap between its emission spectrum and the low-energy region of the absorption spectrum of the porphyrin oligomer leads to efficient energy transfer. Thin films of this blend exhibit intense fluorescence in the near-infrared (NIR), with a peak emission wavelength of 886 nm and a photoluminescent quantum yield (PLQY) of 27% in the solid state. Light-emitting diodes (LEDs) fabricated with this blend as the emissive layer achieve average external quantum efficiencies (EQE) of 2.0% with peak emission at 830 nm and a turn-on voltage of 1.6 V. This performance is remarkable for a singlet NIR-emitter; 93% of the photons are emitted in the NIR (lambda > 700 nm), indicating that conjugated porphyrin oligomers are promising emitters for non-toxic NIR OLEDs

    Reversible spin-optical interface in luminescent organic radicals

    Get PDF
    Molecules present a versatile platform for quantum information science, and are candidates for sensing and computation applications. Robust spin-optical interfaces are key to harnessing the quantum resources of materials. To date, carbon-based candidates have been non-luminescent, which prevents optical read-out. Here we report the first organic molecules displaying both efficient luminescence and near-unity generation yield of high-spin multiplicity excited states. This is achieved by designing an energy resonance between emissive doublet and triplet levels, here on covalently coupled tris(2,4,6-trichlorophenyl) methyl-carbazole radicals (TTM-1Cz) and anthracene. We observe the doublet photoexcitation delocalise onto the linked acene within a few picoseconds and subsequently evolve to a pure high spin state (quartet for monoradicals, quintet for biradical) of mixed radical-triplet character near 1.8 eV. These high-spin states are coherently addressable with microwaves even at 295 K, with optical read-out enabled by intersystem crossing to emissive states. Furthermore, for the biradical, on return to the ground state the previously uncorrelated radical spins either side of the anthracene show strong spin correlation. Our approach simultaneously supports a high efficiency of initialisation, spin manipulations and light-based read-out at room temperature. The integration of luminescence and high-spin states creates an organic materials platform for emerging quantum technologies
    corecore